## Prime Power Test

Finite fields only exist when the order (size) is a prime power $p^{k}$ (where $p$ is a prime number and $k$ is a positive integer). For each prime power, there is a finite field with this size, and all fields of a given order are isomorphic.
Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory.

## Input

The first line contains an integer $T$, the number of test cases.
On the next $T$ lines, you will be given an integer $N$ : a proposed order to be tested.

## Output

Output $T$ lines, one for each test case, with $p k$ if $N$ can be the order of a finite field. $p$ must be a prime number, and $k$ an integer such that $N=p^{k}$. Else output "Invalid order".

## Example

## Input:

3
6
7
8

## Output:

Invalid order
71
23

## Constraints

For the hardest input files : $T$ about 100 , and $1<N<2^{2014}, N$ are $2^{128}$-smooth numbers. (Thanks at Min_25 for suggesting this constraint). About $50 \%$ of input cases are "Invalid order".
For the easiest input files : $T$ about 10000, and $1<N<2^{64}$.

