Power the Power Up

Your younger brother's teacher gave him this simple problem.

Given b and c. Evaluate the result of this expression:

$$Result_1 = b^C$$

Your brother definitely was able to solve this easy problem. So his teacher decided to give him a bit harder problem.

Given *a*,*b* and *c*. Evaluate the result of this expression:

$$Result_1 = b^C$$

$$Result_2 = a^{Result_1}$$

However, your brother was also able to solve it. It was not that harder. His teacher was excited -though- and gave him this Bonus Programming Assignment.

Write a program that is given a,b and c; calculates the value of $Result_2$. Since the output may be exponentially very large, checking the correctness of solutions will be a bit subtle problem. So, instead of printing the whole value of $Result_2$, just print the reaminder of dividing $Result_2$ by 1,000,000,007 (10⁹ + 7).

Can you help him solve that task?

Input

The input consists of several test cases. Each case is on a single line. In each case, given three space separated integers a,b and c (0 <= a, b, c <= 2^{31} - 1). The input is terminated by a = b = c = -1

Output

For each case, print exactly one line containing the value of \textit{Result}_2 modulus $10^9 + 7$

Sample test(s)

Input

222

345

-1 -1 -1

Output

16

763327764

Note

You can assume that $0^0 = 1$.