Toward Infinity

Story: Twilight Sparkle was working on some formulas when she came across a strange pattern.
When she added $1 / 2+1 / 4+1 / 8+\ldots$, she saw that it kept getting closer and closer to 1 .
She was able to figure out that problem and a few more, but there are others that are too difficult. She needs your help.

Problem Statement

Given k and r, integers, find
Sum from $n=1$ to infinity of $n^{\wedge} k / r^{\wedge} n$.
Also you must output the exact value, as a fraction in lowest terms.

Input

You will be given a number T on the first line. The following T lines will be of the form Skr
where S is a String label with no spaces, and both k and r are as described above.

Output

Your output will contain T lines of the form
SN/D
where S is the label you were given in the input, N is the numerator of the answer, and D is the denominator. D may be 1.

To be more precise, if the fraction is negative, then output the negative sign next to N .

Example

Input:
6
Case1: 02
Case2: 03
Case3: 0-3
Label: 29
Otherlabel: 1216
Biggest: 50-555

Output:

Case1: 1 / 1
Case2: 1 / 2
Case3: -1 / 4
Label: 45 / 256

Otherlabel: 268201436794928 / 320361328125
Biggest: -71542844799237379223056641850683038399677651990786654293842285446351016224553939010 882650681431892067495137019178862799169155069446928707568453465 /

7086055907083154841158073677533359179964732523333455695465110902606507148230087594593 20274728690683789654784801111318621847552

Note: The output for each case should all be on one line. It is split in the final case here for readability.

Bounds

$\mathrm{T}<=10000$
$0<=k<=50$
$1<|r|<=1000$
The timelimit per case is $\sim x 5$ my Java solution.

