Modular Fibonacci Period

Perhaps the first thing one notices when the Fibonacci sequence is reduced mod M is that it seems periodic.

For example :
$F(\bmod 4)=01123101123$...
$F(\bmod 5)=0112303314044320224101123$...
We define $K(M)$ the period of the Fibonacci sequence reduced mod M if it is periodic.
We just saw that $K(4)=6$ and $K(5)=20$.
Input
The input begins with the number T of test cases in a single line.
In each of the next T lines there are one integer M.

Output

For each test case, on a single line, print $\mathrm{K}(\mathrm{M})$, or "Not periodic." without quotes if need.

Example

Input:
3
4
5
6

Output:
6
20
24

Constraints

$1<\mathrm{T}<10^{\wedge} 4$
$1<M<10^{\wedge} 12$
Edit 2017-02-11, after compiler changes ; new TL. My old Python code end in 1.92 s.

