Fibonacci vs Polynomial (HARD)

Define a sequence Pib(n) as following

- Pib(0) = 1
- Pib(1) = 1
- otherwise, Pib(n) = Pib(n-1) + Pib(n-2) + P(n)

Here **P** is a polynomial.

Given **n** and **P**, find *Pib*(n) modulo 1,111,111.

Maybe you should solve PIBO before this task, it has lower constraints.

Input

First line of input contains two integer \mathbf{n} and \mathbf{d} ($0 \le \mathbf{n} \le 10^9, 0 \le \mathbf{d} \le 10000$), \mathbf{d} is the degree of polynomial.

The second line contains $\mathbf{d}+1$ integers $\mathbf{c}_0, \mathbf{c}_1 \dots \mathbf{c}_d$, represent the coefficient of the polynomial (Thus $\mathbf{P}(x)$ can be written as $\Sigma \mathbf{c}_i x^i$). $0 \le \mathbf{c}_i < 1,111,111,111$ and $\mathbf{c}_d \ne 0$ unless d = 0.

Output

A single integer represents the answer.

Example

Input:

10 0

0

Output:

89

Input:

10 0

Output:

177

Input:

100 1

1 1

Output:

343742333