## Fibonacci vs Polynomial (HARD)

Define a sequence Pib(n) as following

- $\operatorname{Pib}(0)=1$
- $\operatorname{Pib}(1)=1$
- otherwise, $\operatorname{Pib}(\mathrm{n})=\operatorname{Pib}(\mathrm{n}-1)+\operatorname{Pib}(\mathrm{n}-2)+\mathbf{P}(\mathrm{n})$

Here $\mathbf{P}$ is a polynomial.
Given $\mathbf{n}$ and $\mathbf{P}$, find $\operatorname{Pib}(\mathrm{n})$ modulo $1,111,111,111$.
Maybe you should solve PIBO before this task, it has lower constraints.

## Input

First line of input contains two integer $\mathbf{n}$ and $\mathbf{d}\left(0 \leq \mathbf{n} \leq 10^{9}, 0 \leq \mathbf{d} \leq 10000\right)$, $\mathbf{d}$ is the degree of polynomial.

The second line contains $\mathbf{d}+1$ integers $\mathbf{c}_{0}, \mathbf{c}_{1} \ldots \mathbf{c}_{\mathrm{d}}$, represent the coefficient of the polynomial (Thus $\mathbf{P}(\mathrm{x})$ can be written as $\Sigma \mathbf{c}_{\mathrm{i}} \mathrm{x}^{\mathrm{j}}$ ). $0 \leq \mathbf{c}_{\mathrm{i}}<1,111,111,111$ and $\mathbf{c}_{\mathrm{d}} \neq 0$ unless $\mathrm{d}=0$.

## Output

A single integer represents the answer.

## Example

Input:
100
0
Output:
89
Input:
100
1
Output:
177
Input:
1001
11
Output:
343742333

