Fibonacci vs Polynomial

Define a sequence Pib(n) as following

- *Pib*(0) = 1
- *Pib*(1) = 1
- otherwise, $Pib(n) = Pib(n-1) + Pib(n-2) + \mathbf{P}(n)$

Here **P** is a polynomial.

Given **n** and **P**, find *Pib*(n) modulo 1,111,111,111.

Input

First line of input contains two integer **n** and **d** ($0 \le n \le 10^9$, $0 \le d \le 100$), **d** is the degree of polynomial.

The second line contains d+1 integers $c_0, c_1 \dots c_d$, represent the coefficient of the polynomial (Thus P(x) can be written as $\Sigma c_i x^i$). $0 \le c_i \le 100$ and $c_d \ne 0$ unless d = 0.

Output

A single integer represents the answer.

Example

Output: 89

Output:

177

Input:

100 1 1 1

Output:

343742333