PGCD2 - Primes in GCD Table (Hard)

This problem is a harder version of PGCD.

Let PP be the set of all prime numbers. For two positive integers nn and mm, define

f(n,m)=i=1nj=1m[gcd(i,j)P], f(n,m) = \sum_{i=1}^n \sum_{j=1}^m [\gcd(i,j) \in P],

which counts the number of prime numbers among the greatest common divisors gcd(i,j)\gcd(i,j) for 1in1 \leq i \leq n and 1jm1 \leq j \leq m.

Your task: given nn and mm, compute f(n,m)f(n,m).

Input

The first line contains an integer TT, indicating the number of test cases.

Each of the next TT lines contains two positive integers nn and mm

Output

For each test case, print f(n,m)f(n, m) in a single line.

Example

Input:
4
10 10
100 100
123456789 987654321
233333333333 233333333333 Output: 30
2791
33523360713808196
14968599673221238693021

Constraints

There are 6 test files.

Test #0: 1T100001 \leq T \leq 10000, 1n,m1071 \leq n, m \leq 10^7.

Test #1: 1T2001 \leq T \leq 200, 1n,m1081 \leq n, m \leq 10^8.

Test #2: 1T401 \leq T \leq 40, 1n,m1091 \leq n, m \leq 10^9.

Test #3: 1T101 \leq T \leq 10, 1n,m10101 \leq n, m \leq 10^{10}.

Test #4: 1T21 \leq T \leq 2, 1n,m10111 \leq n, m \leq 10^{11}.

Test #5: T=1T = 1, 1n,m2357111317191 \leq n, m \leq 235711131719.

@Speed Addicts: My solution runs in 4.87s (total time). (approx 0.81s per file)


Added by:liouzhou_101
Date:2019-03-22
Time limit:20s
Source limit:50000B
Memory limit:1536MB
Cluster: Cube (Intel G860)
Languages:All
Resource:PGCD

© Spoj.com. All Rights Reserved. Spoj uses Sphere Engine™ © by Sphere Research Labs.