All-pairs shortest-paths in a digraph

Find shortest-path between every pair of vertices in a given directed graph (digraph). The digraph is given in the form of a weight matrix (aka cost adjacency matrix) and all-pairs shortest-paths of the graph is expected in the form of distance matrix where a value at row i and column j indicates the shortest distance from vertex i to vertex j.

Input

The input begins with the number t of test cases in a single line ($\mathrm{t}<=100$). Each test case begins with number of vertices n of the digraph in a new line ($1<=n<=100$) and the following n lines with the weight matrix of the graph. An entry at row i and column j in the weight matrix indicates the weight (aka cost) of the edge from vertex ito vertex j in the graph, or 32765 if there is no such edge.
Assumptions:

1. Weight of an edge is in the range $[-32764,+32764]$.
2. Shortest path between any pair of vertices is in the range $[-32764,+32764]$.
3. There are no cycles (a path starting and ending at a common vertex) of negative length.
4. Weight of a self loop (that is, the weight of an edge from vertex i to i) is always 0 .

Output

For every test case print the distance matrix representing the shortest distance between each pair of vertices in the graph. An entry at row i and column j in the matrix should be the shortest distance from vertex i to vertex j in the graph if there is a path, otherwise 32765. A matrix of order n should be printed in n lines each line having n entries of a row of the distance matrix.

Example

Input:

4
2
032765
327650
2
01
20
4
032765332765
203276532765
32765701
632765327650
1
0

Output:

032765
327650
01
20
01034
2056

7701
61690

