Travelling Salesman Problem

Our saleman residing in Bangalore city is planning to visit a bunch of cities in India and then return back to Bangalore, all by airplanes. He needs your help in minimizing the total airfare.

Input

The input begins with the number t of test cases in a single line ($t<=10$). Each test case begins with number n of number of cities (excluding Bangalore) to be visited ($n<=10$) and ($n+1)^{*}(n+1)$ $(n+1)$ lines having airfare between each pair of cities (INR $0<=$ airfare $<=$ INR 10000). The order of airfares are as follows. Aurfares from Bangalore to all other cities are listed first in some order of the cities (city 1 , city $2, \ldots$, city n), followed airfares from city 1 to Bangalore, city 2 , city 3 , ..., city n and so on. The adjacecy matrix for th graph in the first example input below would be:

0	2000	6000	7000
3000	0	8000	3000
5000	9000	0	1000
8000	4000	1000	0

Output

For every test case print the minimum total cost of the airpfares to for a tour from Bangalore to all other cities and back to Bangalore.

Example

Input:

2
3
2000
6000
7000
3000
8000
3000
5000
9000
1000
8000
4000
1000
2
1000
5000
5000
1000
1000
5000

Output:

11000
3000

