Pell (Mid pelling)

D is a given positive integer, consider the equation :
$X^{2}=D \times Y^{2}+1$, with X and Y positive integers.
Find the minimum numbers (X, Y) within all solutions.
Sometimes it's possible, sometimes not!
Examples:
If $D=2,3^{2}=2 \times 2^{2}+1$, so $X=3$ and $Y=2$.
If $D=3,2^{2}=3 \times 1^{2}+1$, so $X=2$ and $Y=1$.
If $D=4$, it's impossible!

Input

The input begins with the number T of test cases in a single line.
In each of the next T lines there is one integer D .

Output

For each test case, if possible print X and Y the answer of the problem for D, else "-1".

Example

Input:

3
2
3
4

Output:

32
21
-1

Constraints

T <= 1000
$1<\mathrm{D}<=10^{\wedge} 7$, the numbers D were randomly chosen. (but XerK modified one of them!)
190 bytes of sub-optimal python code can get AC in less than 2.5 seconds, there's many rooms to make faster code.
If you have TLE, you should first consider EQU2 first.

