Print Big Binary Numbers

Some answers for some problems could be huge binary numbers. In order to check the computation, one could ask you the sum of its digits. With a little base, the answer is a small number too, but not with a bigger base.

Xerk would like to avoid precomputed results and wish check you've computed his huge numbers. Here's a problem that check computation of a big number N. A tutorial edition exists without language restrictions.

Let define the function $\mathrm{CHK}(\mathrm{N}, \mathrm{B})$:
Input : N a big number in binary representation, B a power of two. Consider N as a base B number.
Output : the sum of its digits in this base.
Example :with B=2^8, $12345678=78+97^{*} B+188^{*} B * B$, so $\operatorname{CHK}(12345678, B)=78+97+188$
This should be easily computed with few bitwise-AND, bitshifts and additions.

Input

The input begins with the number T of test cases in a single line.
In each of the next T lines there are four integers A, B, C, D, given in base 10 .

Output

For each test case :

* compute $\mathrm{N}=\left(\mathrm{A}^{\wedge} \mathrm{B}\right) \mathrm{XOR}\left(\mathrm{C}^{\wedge} \mathrm{D}\right)$.
* print CHK(N, $\left.2^{\wedge} 16384\right)$ as a base 10 number.
(^ denote the power, and XOR the bitwise operator)

Example

Input:

2
7354
1234567890124444

Output:

806
$1194204158794232147799<$...snip...>9938532444216215551948305

Explanations

For test case 1:
$7^{\wedge} 3=343,5^{\wedge} 4=625,343$ XOR $625=806, \operatorname{CHK}\left(806,2^{\wedge} 16384\right)=806$.
For test case 2:
You have to output all 4933 digits of the result.

Constraints

$1<T<=321$
$1<\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}<=10^{\wedge} 4$
Edit 2017-02-11, after compiler update ; new TL.

