Palindromic Number

A postive integer A is called a "palindrome number" if the reverse of the decimal representaion is the same as the original one. Ex. 13231 is a palindrome number, but 13333 is not.

Given a number $A(1<=A<=1 e 18)$, find the number of pairs (a, b) such that a, b are both palindrome numbers, and the sum of a and b is A.

If A is 391 , there are 6 ways: $8+383=383+8=39188+303=303+88=39199+292=292+$ $99=391$

Input

The first Line contains the number of test cases $T<=10$. Each test case contains a number A .

Output

Output the number of ways.

Example

Input:
1
391
Output:
6

