One Theorem, One Year

A number is Almost-K-Prime if it has exactly \mathbf{K} prime numbers (not necessarily distinct) in its prime factorization. For example, $12=2$ * 2 * 3 is an Almost-3-Prime and $32=2$ * 2 * 2 * 2 * 2 is an Almost-5-Prime number. A number \mathbf{X} is called Almost-K-First-P-Prime if it satisfies the following criterions:

1. X is an Almost-K-Prime and
2. X has all and only the first $P(P \leq K)$ primes in its prime factorization.

For example, if $\mathrm{K}=3$ and $\mathrm{P}=2$, the numbers $18=2$ * 3 * 3 and $12=2$ * 2 * 3 satisfy the above criterions. And $630=2$ * 3 * 3 * 5 * 7 is an example of Almost-5-First-4-Prime.

For a given K and P , your task is to calculate the summation of $\boldsymbol{\Phi}(\mathrm{X})$ for all integers X such that X is an Almost-K-First-P-Prime.

In mathematics $\boldsymbol{\Phi} \mathbf{(X)}$ means the number of relatively prime numbers with respect to X which are smaller than X. Two numbers are relatively prime if their GCD (Greatest Common Divisor) is 1. For example, $\Phi(12)=4$, because the numbers that are relatively prime to 12 are: $1,5,7,11$.

Input

Input starts with an integer $\mathbf{T}(\mathbf{1 0 0 0 0})$, denoting the number of test cases.
Each case starts with a line containing two integers $\mathrm{K}(1 \leq \mathrm{K} \leq 500)$ and $\mathbf{P}(1 \leq P \leq K)$.

Output

For each case, print the case number and the result modulo 1000000007.

Example

Input:

3
32
54
9945

Output:

Case 1: 10
Case 2: 816
Case 3: 49939643

