Number Theory

$f(n)$ and $g(n)$ are two functions defined as following :
$f(n)=\Pi\left(p_{i}^{22 e_{i}+1}+1\right)$, where p_{i} is prime factor of n and e_{i} is highest power of p_{i} in n.
$\mathrm{g}(\mathrm{n})=\Sigma(\mathrm{n} / \operatorname{gcd}(\mathrm{n}, \mathrm{i})) ; 1<=\mathrm{i}<=\mathrm{n}$
For a given value of n, you have to compute $[f(\mathrm{n}) / \mathrm{g}(\mathrm{n})] \% 1000000007$.

Input

First line has $\mathrm{T}(<=10000)$, next T lines has $2<=\mathrm{n}<=10^{\wedge} 12$.

Output

$[f(n) / g(n)] \% 1000000007$ for each test case.

Example

Input:
2
2
4
Output:
3
3

Warning: Test cases aren't random. Test files consist of large primes, strong pseudo primes, Carmichael numbers, squares of primes, product of large primes, worst possible test cases for fermat, miller rabin and other primality testing algorithms.

Note: You may try the tutorial version (same test files, 5 s -100s time limit).

