Roads of NITT

The Institute of NITT believes in frugality. So when they made the plan for interconnecting the N hostels, they decided to construct as few bidirectional roads as possible. The hostels are interconnected with roads in such a way that every pair of hostels is connected by exactly one path.

Moreover, they were so frugal that they used low quality tar in making the roads. As a result, the roads start to crack and cannot be used anymore.

Now Alpa has a set of queries. At the time of each query, he knows the roads that are un-usable. He wants to find the number of pairs of hostels that are disconnected, i.e, the number of pairs (x, y) such that $1<=x<y<=N$ and there exists no path between hostels x and y.

Help him find the result for each query.

Constraints:

Test cases <= 5

No. of hostels, $\mathrm{N}<=20000$
No. of queries, $Q<=20000$

Input

First line contains t, the total test cases.

Each test case looks as follows:

First line contains N , total number of hostels.

Next N-1 lines contain two integers x and y, indicating that there is a road between x and $y .(1<=x<y<=N)$. The roads are numbered from 1 to $\mathrm{N}-1$.

Next line contains Q, total number of queries.
Next Q lines contain the Q queries.
Each query may be of the following two forms:
$R x$ - Remove the road numbered x. It is guaranteed that this road existsand hasn't already been removed.
Q - Output the total number of pairs (x, y) such that $1<=x<y<=N$ and there exists no path between hostels x and y.

Output

For each test case,

Output a line for each query with the required value.

Print a blank line after each test case.

Example

Input:
2

3
12
13
5
Q
R 1
Q
R2
Q

Output:

0

2
3

0
3
5

6

