NO GCD

You are given $\mathbf{N}(\mathbf{1}<=\mathbf{N}<=\mathbf{1 0 0 0 0 0})$ integers. Each integer is square free(meaning it has no divisor which is a square number except 1) and all the prime factors are less than 50 . You have to find out the number of pairs are there such that their gcd is 1 or a prime number. Note that (i, j) and (j, i) are different pairs if i and j are different.

Input

The first line contains an integer $\mathbf{T}(\mathbf{1}<=\mathbf{T}<=\mathbf{1 0})$, the number of tests. Then T tests follows. First line of each tests contain an integer \mathbf{N}. The next line follows \mathbf{N} integers.

Output

Print T lines. In each line print the required result.

Sample Input	Sample Output
1	8
3	
216	

Explanation

```
\(\operatorname{gcd}(1,2)=1\)
\(\operatorname{gcd}(2,1)=1\)
\(\operatorname{gcd}(2,6)=2\), a prime number
\(\operatorname{gcd}(6,2)=2\), a prime number
\(\operatorname{gcd}(1,6)=1\)
\(\operatorname{gcd}(6,1)=1\)
\(\operatorname{gcd}(2,2)=2\), a prime number
\(\operatorname{gcd}(1,1)=1\)
```

So, total of 8 pairs.

Problem Setter: Nafis Sadique, Jahangirnagar University

