Submit | All submissions | Best solutions | Back to list |
NDIV - n-divisors |
We all know about prime numbers, prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself.
We can classify the numbers by its number of divisors, as n-divisors-numbers, for example number 1 is 1-divisor number, number 4 is 3-divisors-number... etc.
Note: All prime numbers are 2-divisors numbers.
Example:
8 is a 4-divisors-number [1, 2, 4, 8].
Input
Three integers a, b, n.
Output
Print single line the number of n-divisors numbers between a and b inclusive.
Example
Input: 1 7 2 Output: 4
Constraints
1 <= a, b <=10^9
0 <= b - a <= 10^4
1 <= n <= 100
Added by: | abdelkarim |
Date: | 2012-12-07 |
Time limit: | 1s |
Source limit: | 50000B |
Memory limit: | 1536MB |
Cluster: | Cube (Intel G860) |
Languages: | All except: ASM64 |
Resource: | Owner |
hide comments
|
|||||||
2017-05-26 02:23:59
AC in 1 go, nice question, 0.00 sec :D |
|||||||
2017-03-21 17:20:25
strict time limit but AC... |
|||||||
2017-01-08 04:22:50
this is an easy one if you understand the concept of prime factorization and sieve :) |
|||||||
2017-01-01 18:02:32
I m getting TLE, I think my solution is efficient. PLEASE HELP Solution id 18492490 |
|||||||
2016-12-26 16:38:55
made a lot of mistakes trying a lot of different algorithms, finally got AC |
|||||||
2016-08-28 15:31:07
Easy one. AC in one go :D. |
|||||||
2016-08-09 20:56:22
ideone time limit:0.01s but here time limit exceeded is shown why? |
|||||||
2014-10-08 20:28:05 Ankur Singh
how is top solution made? time: 0.01 sec!!! |
|||||||
2014-08-29 00:39:32 Shivam Mitra
Nice question.Teaches two efficient algorithms. |
|||||||
2014-08-22 23:10:47 THE_SCORPION
TLE in test 22 any help ?? (reply by cyclops) Judging does not halt on first failure. This means that if you see "Running... (22)", you cannot assume your code was correct and fast enough for 0 through 21. For debugging help, you may find the forum useful. Last edit: 2014-08-22 23:39:21 |