Nanoworld

You're living in the future, way beyond the singularity and the exhaustion of ipv6, and you want to plan a fastest trip between your own planet and the planet of the your favourite restaurant.

You have a map of one-directional nanobot ferry lines between the planets in your system. The map states the distance $\mathbf{d}_{\mathbf{i j}}$ between each (connected) pair of planets \mathbf{i} and \mathbf{j}, but due to the rapid technical evolution of this time, you estimate the travel time from \mathbf{i} to \mathbf{j} is $\mathbf{d}_{\mathbf{i j}} / \mathbf{t}$ where \mathbf{t} is the time at which you choose to depart from \mathbf{i}. (It is impossible to travel at $\mathrm{t}=0$).

Input

The first line contains \mathbf{T} the number of test cases.
The first line of each test case contains integers $\mathbf{t 0}, \mathbf{N}, \mathbf{M}$ where

- $\mathbf{t 0}$ is the time at which you start your trip. $0 \leq \mathbf{t 0} \leq 10^{9}$
- \mathbf{N} is the number of planets in your system, numbered $0 \ldots \mathrm{~N}-1.0<\mathbf{N} \leq 2.5^{*} 10^{5}$
- \mathbf{M} is the number of connections between planets. $0<\mathbf{M} \leq 2.5^{*} 10^{5}$

The following \mathbf{M} lines of each test case contain integers $\mathbf{i}, \mathbf{j}, \mathbf{d}$ where

- i is the source planet. $0 \leq \mathbf{i}<\mathbf{N}$
- \mathbf{j} is the destination planet. $0 \leq \mathbf{j}<\mathbf{N}$
- \mathbf{d} is the distance from \mathbf{i} to $\mathbf{j} .0 \leq \mathbf{d} \leq 10^{9}$

Output

The arrival time at planet \mathbf{N}-1 when starting at planet 0 at time t0, or "Impossible" (quotes for emphasis) if there is no possible route.

Example

Input:
2
055
022
233
344
015
146
021
110

Output:

4.91760625098

Impossible

