## The Great Escape

A map consists of $N$ checkpoints (numbered from 1 to $N$ ) connected by M one way roads. A thief is at checkpoint $S$. He wants to move to checkpoint $D$. The police, guessing that the thief will move through the route that takes him the least time to reach D from S, have called for security alerts to be placed in all the roads of all such routes. The thief wants to reach $D$ without passing through any of those security alerted roads in the least possible time. If there are multiple such routes, he wants to travel so as to cross a minimum number of checkpoints. Find the minimum time required by the thief to reach $D$ from $S$, the minimum number of checkpoints in such a route and the number of such routes available. Since the number of such routes may be huge, print the number of such routes modulo 1000000007.

## Input

The first line of the input consists of a single integer $t$ representing the number of test cases( $1<=\mathrm{t}<=300$ )
The first line of each test case consists of two integers $N, M$ where $N$ is the number of checkpoints and $M$ is the number of roads. ( $1<=N<=500$ and $1<=M<=10^{\wedge} 4$ )
The next $M$ lines consist of three integers $x, y, t$ where $x$ and $y$ represent that the road can be used to travel to checkpoint $y$ from checkpoint $x$ in time $t(t<=100)(1<=x, y<=N)$

The last line contains S and D (source and Destination).

## Output

For each test Case, output a single line containing 3 integers $x, y, z$. Where $x$ is the least amount of time needed to travel from $S$ to $D$ without using any of the security alerted roads, $y$ is the minimum number of checkpoints in such a route and $z$ is the number of such routes modulo 1000000007. If there is no such path print -1.

## Example

## Input:

1
33
132
122
324
12
Output:

