Binary multiplication

English

Vietnamese

In this problem, you have to multiply two n-bit binary numbers in 2s complement form. The result should be also a n-bit binary number in 2s complement form. In case there is an arithmetic overflow, you program should be able to detect it.

For your information, the 2 s complement form of $-x$ is the number $2^{\wedge} n-x$. A n-bit $2 s$ complement number ranges from -2^{n-1} to $2^{n-1}-1$.

Input

There are multiple test cases (no more than 40). For each test case, there are three input lines. The first line contains $n(0 \leq n \leq 1024)$. $n=0$ signals the end of the input. Otherwise, the second and third lines contain the two n-bit binary numbers.

Output

For each test case, output "overflow" if there is an arithmetic overflow. Otherwise, print the result in 2s complement form.

Example

Input

3
110
011
4
0011
1110
0

Output

overflow
1010

