Total Flow

English

Vietnamese

Farmer John always wants his cows to have enough water and thus has made a map of the $\mathrm{N}(1<=\mathrm{N}<=700)$ water pipes on the farm that connect the well to the barn. He was surprised to find a wild mess of different size pipes connected in an apparently haphazard way. He wants to calculate the flow through the pipes.

Two pipes connected in a row allow water flow that is the minimum of the values of the two pipe's flow values. The example of a pipe with flow capacity 5 connecting to a pipe of flow capacity 3 can be reduced logically to a single pipe of flow capacity 3:
+---5---+---3---+ -> +---3---+

Similarly, pipes in parallel let through water that is the sum of their flow capacities:

$$
\begin{gathered}
+---5---+ \\
---+\quad+---\quad \text {-> }+---8---+ \\
+---3---+
\end{gathered}
$$

Finally, a pipe that connects to nothing else can be removed; it contributes no flow to the final overall capacity:

$$
\begin{aligned}
& +---5---+ \\
& ---+ \\
& +---3---+--
\end{aligned} \quad->\quad+--3---+
$$

All the pipes in the many mazes of plumbing can be reduced using these ideas into a single total flow capacity.

Given a map of the pipes, determine the flow capacity between the well (A) and the barn (Z).

Consider this example where node names are labeled with letters:

Pipe BC and CD can be combined:

Then BD and DZ can be combined:

Then two legs of BZ can be combined:

$$
\stackrel{B}{A+--3--+---9--+Z}
$$

Then $A B$ and $B Z$ can be combined to yield a net capacity of 3 :
A+---3---+Z

Write a program to read in a set of pipes described as two endpoints and then calculate the net flow capacity from ' A ' to ' Z '. All networks in the test data can be reduced using the rules here.

Pipe i connects two different nodes a_i and b_i (a_i in range 'A-Za-z'; b_i in range 'A-Za-z') and has flow F_i (1 <= F_i <= $1,000)$. Note that lower- and upper-case node names are intended to be treated as different.

INPUT

* Line 1: A single integer: N
* Lines $2 . . \mathrm{N}+1$: Line $\mathrm{i}+1$ describes pipe i with two letters and an integer, all space-separated: a_i, b_i, and F_i

SAMPLE INPUT

5
A B 3
B C 3
C D 5
D Z 4
B Z 6

OUTPUT

* Line 1: A single integer that the maximum flow from the well ('A') to the barn ('Z')

SAMPLE OUTPUT

