GCD Determinant

English

We say that a set $S=\{x 1, x 2, \ldots, x n\}$ is factor closed if for any $x i \in S$ and any divisor d of $x i$ we have $d \in S$. Let's build a GCD matrix $(S)=(s i j)$, where $\operatorname{sij}=G C D(x i, x j)-$ the greatest common divisor of $x i$ and $x j$. Given the factor closed set S, find the value of the determinant:
$D_{n}=\left|\begin{array}{ccccc}\operatorname{gcd}\left(x_{1}, x_{1}\right) & \operatorname{gcd}\left(x_{1}, x_{2}\right) & \operatorname{gcd}\left(x_{1}, x_{3}\right) & \ldots & \operatorname{gcd}\left(x_{1}, x_{n}\right) \\ \operatorname{gcd}\left(x_{2}, x_{1}\right) & \operatorname{gcd}\left(x_{2}, x_{2}\right) & \operatorname{gcd}\left(x_{2}, x_{3}\right) & \ldots & \operatorname{gcd}\left(x_{2}, x_{n}\right) \\ \operatorname{gcd}\left(x_{3}, x_{1}\right) & \operatorname{gcd}\left(x_{3}, x_{2}\right) & \operatorname{gcd}\left(x_{3}, x_{3}\right) & \ldots & \operatorname{gcd}\left(x_{3}, x_{n}\right) \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ \operatorname{gcd}\left(x_{n}, x_{1}\right) & \operatorname{gcd}\left(x_{n}, x_{2}\right) & \operatorname{gcd}\left(x_{n}, x_{3}\right) & \ldots & \operatorname{gcd}\left(x_{n}, x_{n}\right)\end{array}\right|$

Input

The input file contains several test cases. Each test case starts with an integer $\mathrm{n}(0<\mathrm{n}<1000)$, that stands for the cardinality of S. The next line contains the numbers of $S: x 1, x 2, \ldots, x n$. It is known that each xi is an integer, $0<x i<2^{\star} 10^{\wedge} 9$. The input data set is correct and ends with an end of file.

Output

For each test case find and print the value Dn mod 1000000007.

Sample

Input :
2
12
3
139
4
1236

Ouput:
1
12
4

