Moon Safari (Extreme)

This problem is a harder version of MOON 2 .
Your task is: given \$N\$, \$a\$ and \$r\$, compute
$\$ \$ \mathrm{~S}(\mathrm{~N}, \mathrm{a}, \mathrm{r})=$ \sum_\{i=1$\}^{\wedge} \mathrm{N} \mathrm{a}^{\wedge} \mathrm{i} \mathrm{i}^{\wedge} r$. \$\$

Input

The first line contains an integer $\$ T \$$, the number of test cases.
On the next \$T\$ lines, you will be given three integers \$N\$, \$a\$ and \$r\$.

Output

Output \$T\$ lines, one for each test case, with \$S(N, a, r)\$.
Since the answer can get very big, output it modulo $\$ 10^{\wedge} 9+7 \$$.

Example

Input:

2
345
678
Output:
16068
329990641

Constraints

Overall constraints:

- \$1 \leq T Veq 10^5\$
- \$1 \leq N Veq 10^\{18\}\$
- \$1 \leq a \leq $10^{\wedge}\{18\} \$$
- \$1 \leq r \leq 10^8\$

More precise information: there are 6 test cases.
Test \#0: $\$ 1$ leq T leq 100000\$ and $\$ 1$ Veq r Veq 1000\$.
Test \#1: \$1 \leq T Veq 10000\$ and \$1 \eq r Veq 10000\$.
Test \#2: $\$ 1$ leq T Veq $1000 \$$ and $\$ 1$ leq r Veq $100000 \$$.
Test \#3: $\$ 1$ leq T Veq 100\$ and $\$ 1$ leq r Veq 1000000\$.
Test \#4: $\$ 1$ Veq T Veq $10 \$$ and $\$ 1$ leq r Veq 10000000\$.
Test \#5: \$T = $1 \$$ and $\$ 1$ leq r leq $100000000 \$$.

Information

Four trips on the moon are provided, Moon (easy), Moon1 (medium), Moon2 (hard), Moon4 (extreme) with different constraints.

Please pay attention to the constraints which may differ from the previous versions.
Also please handle the constraints carefully.
We do not provide the intended time complexity in order to encourage possible various ways of thinking.
My fastest $\mathrm{C}++$ code got AC under in 12.14s. (approx 2.02s per file)
Good luck and have fun :-)
You may be surprised why the code of this problem is not Moon3. It is because

- 4 is a lucky number on the moon.
- This problem is the 4th one in the Moon series.
- 4 is a power of 2 , which indicates exponential increasing difficulty starting from 2.
- Moon3hasbeenused.

