Power Modulo Inverted

Given 3 positive integers x, y and z, you can find $k=x^{y} \% z$ easily, by fast power-modulo algorithm. Now your task is the inverse of this algorithm. Given 3 positive integers x, z and k, find the smallest non-negative integer y, such that $k \% z=x^{y} \% z$.

Input

About 600 test cases.
Each test case contains one line with 3 integers x, z and $k .\left(1<=x, z, k<=10^{9}\right)$
Input terminates by three zeroes.

Output

For each test case, output one line with the answer, or "No Solution"(without quotes) if such an integer doesn't exist.

Example

Input:

55833
243
000
Output:
9
No Solution

