Power Modulo Inverted

Given 3 positive integers x, y and z, you can find $k = x^y \% z$ easily, by fast power-modulo algorithm. Now your task is the inverse of this algorithm. Given 3 positive integers x, z and k, find the smallest non-negative integer y, such that $k\% z = x^y\% z$.

Input

About 600 test cases.

Each test case contains one line with 3 integers x, z and k. $(1 \le x, z, k \le 10^9)$

Input terminates by three zeroes.

Output

For each test case, output one line with the answer, or "No Solution" (without quotes) if such an integer doesn't exist.

Example

Output:

9 No Solution