Minimum Permutation

English

The inversion number of an integer sequence a1, a2 ... an is the number of pairs (ai, aj) that satisfy $\mathrm{i}<\mathrm{j}$ and ai $>\mathrm{aj}$. Given n and the inversion number m , your task is to find the smallest permutation of the set $\{1,2 \ldots \mathrm{n}\}$, whose inversion number is exactly m. A permutation a1, a2 .. an is smaller than b1, b2 ... bn if and only if there exists an integer k such that $a j=b j$ for $1 \leq j<k$ but ak <bk.

Input

The input consists of several test cases. Each line of the input contains two integers n and m. Both of the integers at the last line of the input is -1 , which should not be processed. You may assume that $1 \leq n \leq 50000$ and $0 \leq m \leq 1 / 2 n(n-1)$.

Output

For each test case, print a line containing the smallest permutation as described above, separates the numbers by single spaces.

Sample

Input

59
73
-1-1

Output
45321
1234765

