Paid Roads

A network of \mathbf{m} roads connects \mathbf{N} cities (numbered from 1 to \mathbf{N}). There may be more than one road connecting one city with another. Some of the roads are paid. There are two ways to pay for travel on a paid road \mathbf{i} from city $\mathbf{a}_{\boldsymbol{i}}$ to city $\mathbf{b}_{\mathbf{i}}$:

- in advance, in a city $\mathbf{c}_{\mathbf{i}}$ (which may or may not be the same as $\mathbf{a}_{\mathbf{i}}$);
- after the travel, in the city $\mathbf{b}_{\mathbf{i}}$. The payment is $\mathbf{P}_{\mathbf{i}}$ in the first case and $\mathbf{R}_{\mathbf{i}}$ in the second case. Write a program to find a minimal-cost route from the city 1 to the city \mathbf{N}.

Input

The first line of the input contains the values of \mathbf{N} and \mathbf{m}. Each of the following \mathbf{m} lines describes one road by specifying the values of $\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{i}}, \mathbf{c}_{\mathbf{i}}, \mathbf{P}_{\mathbf{i}}, \mathbf{R}_{\mathbf{i}}(1 \leq \mathrm{i} \leq m)$. Adjacent values on the same line are separated by one or more spaces. All values are integers, $1 \leq \mathrm{m}, \mathrm{N} \leq 10,0 \leq \mathrm{Pi}, \mathrm{Ri} \leq 100, \mathrm{Pi} \leq$ $\operatorname{Ri}(1 \leq i \leq m)$.

Output

The first and only line of the output must contain the minimal possible cost of a trip from the city 1 to the city \mathbf{N}. If the trip is not possible for any reason, the line must contain the word 'impossible'.

Example

Input:
45
1211010
2313050
3438080
2121010
1321050

Output:

110

