Manhattan Wire

There is a rectangular area containing $\mathrm{n} \times \mathrm{m}$ cells. Two cells are marked with " 2 ", and another two with " 3 ". Some cells are occupied by obstacles. You should connect the two " 2 "s and also the two " 3 " s with non-intersecting lines. Lines can run only vertically or horizontally connecting centers of cells without obstacles.

Lines cannot run on a cell with an obstacle. Only one line can run on a cell at most once. Hence, a line cannot intersect with the other line, nor with itself. Under these constraints, the total length of the two lines should be minimized. The length of a line is defined as the number of cell borders it passes. In particular, a line connecting cells sharing their border has length 1.

Fig. 1(a) shows an example setting. Fig. 1(b) shows two lines satisfying the constraints above with minimum total length 18.

Figure 1: An example of setting and its solution

Input

The input consists of multiple datasets, each in the following format.

```
n m
row1
rown
```

n is the number of rows which satisfies $2 \leq \mathrm{n} \leq 9$. m is the number of columns which satisfies $2 \leq$ $m \leq 9$. Each rowi is a sequence of m digits separated by a space. The digits mean the following.

0: Empty
1: Occupied by an obstacle
2: Marked with "2"
3: Marked with "3"
The end of the input is indicated with a line containing two zeros separated by a space.

Output

For each dataset, one line containing the minimum total length of the two lines should be output. If there is no pair of lines satisfying the requirement, answer " 0 " instead.

Sample Input

55
00000
00030
20200
10111
00003
23

Sample Output

