Laser Phones

English

The cows have a new laser-based system so they can have casual conversations while out in the pasture which is modelled as a $\mathrm{W} \times \mathrm{H}$ grid of points ($1<=\mathrm{W}<=100 ; 1<=\mathrm{H}<=100$).

The system requires a sort of line-of-sight connectivity in order to sustain communication. The pasture, of course, has rocks and trees that disrupt the communication but the cows have purchased diagonal mirrors ('/' and 'l' below) that deflect the laser beam through a 90 degree turn. Below is a map that illustrates the problem.

H is 8 and W is 7 for this map. The two communicating cows are notated as 'C's; rocks and other blocking elements are notated as '*'s:

```
\begin{tabular}{|c|c|}
\hline & 7 \\
\hline C & 6..... \(/\)-C \\
\hline 5......* & 5.....|* \\
\hline 4*****.* & 4****** \\
\hline \(3 . .\). * & 3....*| \\
\hline 2.... * & 2....*** \\
\hline 1. C & 1. C.. **. \\
\hline & \(0.1------1\) \\
\hline 0123456 & 012345 \\
\hline
\end{tabular}
```

Determine the minimum number of mirrors M that must be installed to maintain laser communication between the two cows, a feat which is always possible in the given test data.

Input

- Line 1: Two space separated integers: W and H .
- Lines 2.. $\mathrm{H}+1$: The entire pasture.

Output

- Line 1: A single integer: M.

Example

Input:
78
......C
......*

.......
.c..*.

Output:

Any suggested test case will be welcomed.

