Laser Phones

English

<u>Vietnamese</u>

The cows have a new laser-based system so they can have casual conversations while out in the pasture which is modelled as a W × H grid of points ($1 \le W \le 100$; $1 \le H \le 100$).

The system requires a sort of line-of-sight connectivity in order to sustain communication. The pasture, of course, has rocks and trees that disrupt the communication but the cows have purchased diagonal mirrors ('/' and '\' below) that deflect the laser beam through a 90 degree turn. Below is a map that illustrates the problem.

H is 8 and W is 7 for this map. The two communicating cows are notated as 'C's; rocks and other blocking elements are notated as '*'s:

7	7
6 C	6 /-C
5 *	5 *
4 * * * * * . *	4 * * * * * *
3 *	3 * .
2 *	2 * .
1.C*	1 . C * .
0	0.\/.
0123456	0123456

Determine the minimum number of mirrors M that must be installed to maintain laser communication between the two cows, a feat which is always possible in the given test data.

Input

- Line 1: Two space separated integers: W and H.
- Lines 2..H+1: The entire pasture.

Output

• Line 1: A single integer: M.

Example

Input: 7 8C* ******.* ...* ...*. ...*.

Output: 3

Any suggested test case will be welcomed.