Largest Submatrix

You are given an matrix M (consisting of nonnegative integers) and an integer K. For any submatrix of M^{\prime} of M define $\min \left(M^{\prime}\right)$ to be the minimum value of all the entries of M^{\prime}. Now your task is simple: find the maximum value of $\min \left(\mathrm{M}^{\prime}\right)$ where M^{\prime} is a submatrix of M of area at least K (where the area of a submatrix is equal to the number of rows times the number of columns it has).

Input

The first line contains a single integer $T(T \leq 10)$ denoting the number of test cases, T test cases follow. Each test case starts with a line containing three integers, $R(R \leq 1000), C(C \leq 1000)$ and $K(K \leq R * C)$ which represent the number of rows, columns of the matrix and the parameter K.
Then follow R lines each containing C nonnegative integers, representing the elements of the matrix M. Each element of M is $\leq 10^{\wedge} 9$

Output

For each test case output two integers: the maximum value of $\min \left(M^{\prime}\right)$, where M^{\prime} is a submatrix of M of area at least K , and the maximum area of a submatrix which attains the maximum value of $\min \left(\mathrm{M}^{\prime}\right)$. Output a single space between the two integers.

Example

Input:

2
222
11
11
332
123
456
789

Output:

14
82

