Matrix inverse

Let p a prime number. A set $F_{p}=\{0,1, \ldots, p-1\}$ equipped with the mod p addition and multiplication is a finite field. In this problem you have to compute the multplicative inverse of some F_{p} valued (quadratic) matrices.

The input consists of blocks. The structure of a block is:
n p
$A_{11} \ldots A_{1 n}$
$A_{n 1} \ldots A_{n n}$
where p is a prime number, $1<\mathrm{n}, \mathrm{p}<101$, and A_{ij} are in F_{p}. The last block followed by 00 .

The ouput for each block is either the multiplicative inverse of a given matrix if it exists or the word "singular"

Example

Input:
42
1111
1101
0001
0101
37
350
051
666
22
11
10
35
400
241
023
37
014
612
211
00

Output:

0101
0011
1100
0010

633
511
332

01
11
singular
singular

