Self Numbers

Background

In 1949 the Indian mathematician D.R. Kaprekar discovered a class of numbers called selfnumbers. For any positive integer n, define $d(n)$ to ben plus the sum of the digits of n. (The d stands for digitadition, a term coined by Kaprekar.) For example:

$$
d(75)=75+7+5=87
$$

Given any positive integer n as a starting point, you can construct the infinite increasing sequence of integers $n, d(n), d(d(n)), d(d(d(n))), \ldots$ For example, if you start with 33 , the next number is $33+3+3=39$, the next is $39+3+9=51$, the next is $51+5+1=57$, and so you generate the sequence
$33,39,51,57,69,84,96,111,114,120,123,129,141, \ldots$
The number n is called a generator of $d(n)$. In the sequence above, 33 is a generator of 39,39 is a generator of 51,51 is a generator of 57 , and so on.

Some numbers have more than one generator: For example, 101 has two generators, 91 and 100. A number with no generators is a self-number. There are thirteen self-numbers less than 100: $1,3,5,7,9,20,31,42,53,64,75,86$, and 97.

Problem

Write a program to output all positive self-numbers less than 1000000 in increasing order, one per line.

Input

There is no input.

Output

All positive self-numbers less than 1000000 in increasing order, one per line.

