MinCut Query

English

 VietnameseYou are given a weighted undirected graph with edge weight denoting the capacity of the edge.
Now given a number x, output how many unordered (s, t) pairs are there in the graph such that $\operatorname{minCut}(\mathrm{s}, \mathrm{t})<=\mathrm{x}$.

A Cut is a partition of the vertices of a graph into two sets such that s and t belong to different set after the partition.

In weighted graphs, the size of a cut is defined to be the sum of weights of the edges crossing the cut. minCut is a cut whose size is the least possible.

Input

First line contains T , the number of test cases.
For each test case the first line contains two integers n and m, denoting the number of vertices and the number of edges in the graph.

Next m lines contain 3 integers u, v, c denoting an undirected of capacity c between vertices u and v ; $1<=\mathrm{u}, \mathrm{v}<=\mathrm{n}$.

Next line contains q, the number of queries. Next q line contains one number each which denotes the input x for ith query.

Note: there can be multiple edges between a pair of vertices.

Output

The output for each test case should consist of q lines with one integers in each of them denoting the number of unordered (s, t) pairs corresponding to that query. Output a blank line BETWEEN the test cases.

Note: The timelimit for the problem is somewhat strict.

Example

Input:

Output:

10

Constraints

Input Set 1: numberOfTestCases <= 15, $n<=40, \mathrm{~m}<=400, \mathrm{q}<=10$
Input Set 2: numberOfTestCases <= 20, $\mathrm{n}<=150, \mathrm{~m}<=3000$, $\mathrm{q}<=30$
Edge weights are less than or equal to $10^{\wedge} 6$

