MinCut Query

<u>English</u> <u>Vietnamese</u>

You are given a weighted undirected graph with edge weight denoting the capacity of the edge.

Now given a number x, output how many unordered (s,t) pairs are there in the graph such that $minCut(s,t) \le x$.

A Cut is a partition of the vertices of a graph into two sets such that s and t belong to different set after the partition.

In weighted graphs, the size of a cut is defined to be the sum of weights of the edges crossing the cut. minCut is a cut whose size is the least possible.

Input

First line contains T, the number of test cases.

For each test case the first line contains two integers n and m, denoting the number of vertices and the number of edges in the graph.

Next m lines contain 3 integers u,v,c denoting an undirected of capacity c between vertices u and v; $1 \le u,v \le n$.

Next line contains q, the number of queries. Next q line contains one number each which denotes the input x for ith query.

Note: there can be multiple edges between a pair of vertices.

Output

The output for each test case should consist of q lines with one integers in each of them denoting the number of unordered (s,t) pairs corresponding to that query. Output a blank line BETWEEN the test cases.

Note: The timelimit for the problem is somewhat strict.

Example

Input:

iipu

5 0

1

Λ

Output:

10

Constraints

Input Set 1: numberOfTestCases \leq 15, n \leq 40, m \leq 400, q \leq 10

Input Set 2: numberOfTestCases \neq 20, n \neq 150, m \neq 3000, q \neq 30

Edge weights are less than or equal to 10^6