## Maximum Self-Matching

You're given a string s consisting of letters 'a', 'b' and 'c'.
The matching function $m_{\mathbf{s}}(i)$ is defined as the number of matching characters of $\mathbf{s}$ and its i-shift. In other words, $m_{\mathbf{s}}(i)$ is the number of characters that are matched when you align the 0 -th character of $\mathbf{s}$ with the i-th character of its copy.

You are asked to compute the maximum of $\mathrm{m}_{\mathbf{s}}(\mathrm{i})$ for all i ( $1<=\mathrm{i}<=|\mathbf{s}|$ ). To make it a bit harder, you should also output all the optimal i's in increasing order.

## Input

The first and only line of input contains the string $\mathbf{s .} 2<=|\mathbf{s}|<=10^{5}$.

## Output

The first line of output contains the maximal $m_{s}(i)$ over all $i$.
The second line of output contains all the i's for which $\mathrm{m}_{\mathbf{s}}(i)$ reaches maximum.

## Example

Input:
caccacaa

## Output:

4
3

## Explanation:

caccacaa
caccacaa

The bold characters indicate the ones that match when shift $=3$.

