Maximum Self-Matching

You're given a string **s** consisting of letters 'a', 'b' and 'c'.

The matching function $m_s(i)$ is defined as the number of matching characters of s and its i-shift. In other words, $m_s(i)$ is the number of characters that are matched when you align the 0-th character of s with the i-th character of its copy.

You are asked to compute the maximum of $m_s(i)$ for all i (1 <= i <= |s|). To make it a bit harder, you should also output all the optimal i's in increasing order.

Input

The first and only line of input contains the string **s**. $2 \le |\mathbf{s}| \le 10^5$.

Output

The first line of output contains the maximal $m_s(i)$ over all i.

The second line of output contains all the i's for which $m_s(i)$ reaches maximum.

Example

Input:

caccacaa

Output:

4 3

Explanation:

caccacaa

caccacaa

The bold characters indicate the ones that match when shift = 3.