Get higher and higher

You are travelling to Kullu Manili, a hill station in India. You saw some huge mountains and very curious to climb the highest ones. Assume that there are \mathbf{n} mountains of height hi given.

But you were wondering about what could be the total height i need to climb if I climb only the mountain of maximum height only in a segment of k continuous mountains, considering all k segements possible. You want to calculate this for all k, such that $1<=k<=n$.

Mathematically, we need to find the sum of maximum element in each possible continuous segment of size k.

Input

The first line contains an input \mathbf{n}.
Then \mathbf{n} numbers follow, denoting the height of ith mountain.

Output

Output \mathbf{n} lines, where ith line contains the sum of height of mountains to climb considering all continuous segments of size i.

Constraints:

$1<=\mathrm{n}<=10000$

Example

Input:

5
53423

Output:

17
16
13

9
5

Explanation:

For $k=1$, all the contiguous segments are (5), (3), (4), (2), (3). The total sum of maximum in each segment is $17(5+3+4+2+3)$.
For $\mathrm{k}=2$, all the contiguous segments are $(5,3),(3,4),(4,2),(2,3)$. The total sum of maximum in each segment is $16(5+4+4+3)$.
For $\mathrm{k}=3$, all the contiguous segments are $(5,3,4),(3,4,2),(4,2,3)$. The total sum of maximum in each segment is $13(5+4+4)$.
For $\mathrm{k}=4$, all the contiguous segments are $(5,3,4,2),(3,4,2,3)$. The total sum of maximum in each segment is $9(5+4)$.
For $\mathrm{k}=5$, all the contiguous segments are (5,3,4,2,3). The total sum of maximum in each segment is 5 (5).

