Matts Trip

Matt finds himself in a desert with $\$ \mathrm{~N} \$$ (\$2 Veq N Veq 10\$) oases, each of which may have food, water, and/or a palm tree. If oasis $\$ i \$$ has food, then $\$ F _i=1 \$$ - otherwise, $\$ F_{-} \mathrm{i}=0 \$$. Similarly, $\$ W _i=1 \$$ if and only if oasis $\$ i \$$ has water, and $\$ P_{-} \mathrm{i}=1 \$$ if and only if it has a palm tree. These 3 values are completely independent of one another.

Some pairs of these oases are connected by desert paths, which each take 1 hour to traverse. There are $\$ \mathrm{M} \$$ ($\$ 0$ Veq M leq $45 \$$) such paths, with path $\$ i \$$ connecting distinct oases $\$ \mathrm{~A} _$i\$ and \$B_i\$ in both directions (\$1 Veq A_i,B_i Veq N\$). No pair of oases is directly connected by more than one path, and it's not guaranteed that all oases are connected by some system of paths.

Matt starts at an oasis \$S\$, and wants to end up at a different oasis \$E\$ (\$1 Veq S,E Veq N\$). Both of these oases are quite nice - it's guaranteed that $\$ F _S=W _S=P _S=F _E=W _E=P _E=1 \$$. Since he's in a hurry to get out of the desert, he wants to travel there in at most $\$ \mathrm{H} \$(\$ 1 \mathrm{leq} \mathrm{H}$ Veq 10^9\$) hours.
However, he can only survive for up to \$MF\$ hours at a time without food, and up to \$MW\$ hours at a time without water ($\$ 1$ Veq MF,MW \backslash eq $4 \$$). For example, if $\$ M F=1 \$$ and $\$ M W=2 \$$, then every single oasis he visits along the way must have food (as he would otherwise spend more than 1 hour without it), and he cannot visit 2 or more oases without water in a row.

Since Matt is a computer scientist, before actually going anywhere, he's interested in the number of different paths he can take that will get him from oasis $\$ \mathrm{~S} \$$ to oasis $\$ \mathrm{E} \$$ alive in at most $\$ \mathrm{H} \$$ hours.
Note that there may be no such paths.
Being a computer scientist, he of course only cares about this number modulo (\$10^9+7\$).

Input

Line $\$ 1 \$: 7$ integers, $\$ \mathrm{~N} \$, \$ \mathrm{M}$, $\$ \mathrm{H} \$$, $\$ \mathrm{~S} \$, \$ \mathrm{E}$, $\mathbf{\$ M F}$, and $\$ \mathrm{MW} \$$
Next \$N\$ lines: 3 integers, \$F_i\$, \$W_i\$, and \$P_i\$, for \$i=1..N\$

Next \$M\$ lines: 2 integers, \$A_i\$ and \$B_i\$, for \$i=1..M\$

Output

1 integer, the number of different valid paths, modulo (\$10^9+7\$)

Example 1

Input:

3331214
111
111
010
12

23
13

Output:

2

Explanation:

The two possible paths, described in terms of oases visited, are $\$ 1$ lightarrow $2 \$$ and $\$ 1$ \rightarrow 2 lrightarrow 1 \rightarrow $2 \$$. Matt can never go to oasis 3 , as it doesn't contain food, which he can't survive without for more than 1 hour. The path $\$ 1$ \rightarrow 2 \rightarrow 1 \rightarrow 2 lrightarrow 1 lrightarrow $2 \$$ is not valid, as it would take 5 hours rather than at most 3.

Note that oasis 3 is the only oasis without a palm tree.

Example 2

Input:
5533232
100
111
111
001
010
12
13
14
34
42
Output:
2

Explanation:

The two possible paths are $\$ 3$ \rightarrow 1 \rightarrow $2 \$$ and $\$ 3$ \rightarrow 4 \rightarrow $2 \$$.
Thic timo nacoc 1 and 5 arolankinn in palm trees.
Loading [Contrib]/a11y/accessibility-menu.js

