Symmetric matrix

[NOTE: A harder version of this problem is Symmetric Matrix 2; you may want to try it once you solve this one.]

You are given an $\mathbf{N} \times \mathbf{N}$ matrix \mathbf{m}_{ij} such that $\mathbf{m}_{\mathrm{ij}}==\mathbf{m}_{\mathrm{ji}}$ for $\mathrm{i}, \mathrm{j}=\mathbf{1}, \ldots, \mathbf{N}$. We would like to compute the value of

$$
\sum_{i_{1}=1}^{N} \cdots \sum_{i_{K}=1}^{N} \prod_{a=2}^{K} \prod_{b=1}^{a-1} m_{i_{a} i_{b}}
$$

Note that in the above expression we are going over \mathbf{K} indices $\mathbf{i}_{1}, \ldots, \mathbf{i}_{\mathbf{K}}$ that run over the values $\mathbf{1}$, ..., \mathbf{N}, while summing over the product of all the $\mathbf{K}^{*}(\mathbf{K}-\mathbf{1}) / \mathbf{2}$ possible matrix elements that we can form with these indices.

Input

The first line of the input contains two integers \mathbf{N} and $\mathbf{K}(\mathbf{2} \leq \mathbf{N} \leq \mathbf{1 0 0}$ and $\mathbf{2 \leq K} \leq 5)$, representing the number of rows and columns of the matrix $\boldsymbol{m}_{\mathrm{ij}}$ and the number of sums in the formula above, respectively. The following \mathbf{N} lines contain \mathbf{N} integers each, being the \mathbf{j}-th number in the \mathbf{i}-th line the value of $m_{i j}\left(-10 \leq m_{i j} \leq 10\right.$ and $m_{i j}=m_{j i}$ for $\left.\mathrm{i}, \mathrm{j}=\mathbf{1}, \ldots, \mathrm{N}\right)$.

Output

Print a single line with the result of the calculation. Because this number can be very big, output its remainder modulo division by $1000000007\left(==10^{9}+7\right)$.

Example

Input:
45
-4 -3-4 2
-3-6 1 -8
-4 1-10-6
2-8-6 0

Output:

308822466

