Real Mangoes for Ranjith

Ranjith is very fond of mangoes. One fine sunny day, he goes to market to get some mangoes. In the market place, he finds N boxes (indexed from 1 to N), filled with mangoes kept infront of him. Each box indexed i is denoted by b_{i} and contains exactly i mangoes. The number of mangoes in b_{i} is denoted by m_{i} and $m_{-} i=i$. Let t_{i} denotes the type of mangoes in box $b_{i}\left(t_{i}\right.$ is either "real" or "fake"). He can choose any box $b_{i}(i<=N-2)$, but he doesn't know if the box contains "real" mangoes or "fake" mangoes i.e. type of box b_{i}.

The type of mangoes in b_{i} depends on the number of mangoes in boxes b_{i}, b_{i+1}, b_{i+2} i.e. $\left\{m_{i}, m_{i+1}\right.$, $\left.m_{i+2}\right\}$. Mangoes in box b_{i} are "real" if for each pair of numbers taken from set $\left\{m_{i}, m_{i+1}, m_{i+2}\right\}$, Greatest common divisor(GCD) equals 1 . Otherwise, "fake". Note that t_{i} is not defined for $i=N-1$ and $i=N$ and assumed to be "fake".

Given N, Ranjith wants to know the total number of "real" mangoes he will get from all boxes. As Ranjith cannot count beyond N, output the result modulo N.

Input

Test File starts with number of test cases - T;
T lines follows, each containing N, number of boxes.

Output

Output T lines Number of "real" mangoes Ranjith gets (modulo N) in each one of the T cases.

Constraints

$2<N<=10^{\wedge} 8$
$T<=10000$

Example

Input:

2
9
5

Output:

7
4

