Real Mangoes for Ranjith

Ranjith is very fond of mangoes. One fine sunny day, he goes to market to get some mangoes. In the market place, he finds *N* boxes (indexed from 1 to *N*), filled with mangoes kept infront of him. Each box indexed *i* is denoted by b_i and contains exactly *i* mangoes. The number of mangoes in b_i is denoted by m_i and $m_i = i$. Let t_i denotes the type of mangoes in box b_i (t_i is either "real" or "fake"). He can choose any box b_i ($i \le N-2$), but he doesn't know if the box contains "real" mangoes or "fake" mangoes i.e. type of box b_i .

The type of mangoes in b_i depends on the number of mangoes in boxes b_i , b_{i+1} , b_{i+2} i.e. $\{m_i, m_{i+1}, m_{i+2}\}$. Mangoes in box b_i are "real" if for each pair of numbers taken from set $\{m_i, m_{i+1}, m_{i+2}\}$, Greatest common divisor(GCD) equals 1. Otherwise, "fake". Note that t_i is not defined for i = N-1 and i = N and assumed to be "fake".

Given *N*, Ranjith wants to know the total number of "real" mangoes he will get from all boxes. As Ranjith cannot count beyond *N*, output the result modulo *N*.

Input

Test File starts with number of test cases - T;

Tlines follows, each containing *N*, number of boxes.

Output

Output T lines Number of "real" mangoes Ranjith gets (modulo N) in each one of the T cases.

Constraints

2 < *N* <= 10^8 *T* <= 10000

Example

```
Input:
2
```

- 29
- 5
- Output:
- 7
- 4