Re-Arrange II

For a sequence of N integers, $\mathrm{A} 1, \mathrm{~A} 2, \ldots$ AN
We can calculate the stability factor P, as
$\mathrm{P}=$ sum of all $\left(\operatorname{abs}\left(\mathrm{A}_{\mathrm{i}}-\mathrm{A}_{\mathrm{i}-1}\right)^{*} \mathrm{C}[i]\right)$ where $2<=\mathrm{i}<=\mathrm{N}$
$C[i]$ is the cost of putting a number at position i
Your task is find the minimum P for the given N numbers considering all the different permutations of them.

Input

First line contains an integer $\mathrm{T}(1<=\mathrm{T}<=10)$ which denotes the total number of test cases. Each test case consists of three lines.

The first line contains the integer $\mathrm{N}(1<=\mathrm{N}<=15)$. The second line contains a space separated list of N integers (<150) which denote the given set of numbers.

The third line contains a space separated list of N integers. The ith integer on this line denotes the value for $C[i](1<=C[i]<150)$

Output

For each test case, print the minimum possible value of P considering all permutations of the given numbers.

Example

Input:

1
5
18365
12345

Output

24
One of the possible permutation of given numbers which has $p=24$ is $1,3,5,6,8$

