## Longest Perfect Increasing Subsequence

Dhrubo has a sequence of $N$ integers. He is trying to find the longest perfect increasing subsequence of that sequence. But he is not very expert in finding longest perfect increasing subsequences. So he needs your help.

A subsequence is a sequence that can be derived by another sequence by deleting elements without changing the order of the remaining elements. An increasing subsequence of a sequence is a subsequence where the elements are sorted in increasing order.

Difference between an increasing subsequence and a perfect increasing subsequence is that in a perfect increasing subsequence the difference between any two consecutive elements is always 1.

For example, let's consider a sequence $S=\{5,2,6,3,7,8,4\}$
$\{5,3,4\}$ is subsequence of sequence $S$ but not an increasing subsequence.
$\{5,7,8\}$ is an increasing subsequence of sequence $S$, but not a perfect increasing subsequence.
But $\{5,6,7,8\}$ is perfect increasing subsequence as the difference between any two consecutive elements is exactly 1.

Note that, a single element will always be perfect increasing subsequence. So $\{5\},\{2\},\{7\}$ are also perfect increasing subsequence of $S$.

## INPUT:

First line of the input contains an integer $\mathrm{N}\left(1<=\mathrm{N}<=10^{5}\right)$ denoting the length of the sequence.
Next line contains $N$ integers separated by space which is the sequence. These integers will be greater than 0 and will not be greater than $10^{6}$.

## OUTPUT:

A single integer in a line denoting the length of the longest perfect increasing subsequence.

## Sample Input: \#1

9
515623874

## Sample Output: \#1

4

## Sample Input: \#2

22135456

## Sample Output: \#2

5
( set by : Nashir Ahmed )

