Loving Power

Angel Luis is now getting math class. His teacher is teaching to him the XOR operation:

- 0 XOR $0=0$
- 0 XOR $1=1$
- 1 XOR $0=1$
- 1 XOR $1=0$

When a number has more than one bit, the operation is applied to all bits. The teacher write two numbers $x, y(0<=x, y<=N)$ and make the $X O R$ operation between x and y, Angel Luis would like to know how many pairs x, y such $x X O R y=2^{z}$ where $z>=0$.

See that for $\mathrm{N}=3$:

- 0 XOR $1=2^{0}$
- 0 XOR $2=2^{1}$
- 3 XOR $1=2^{1}$
- 2 XOR $3=2^{0}$

So there are 4 pairs.
Given N you should return the number of pairs modulo 1000000007.

Input

First line contains number t - the number of cases. Following t lines will each have a number N .
$t<=100$
$N<=1000000000000000\left(10^{15}\right)$.

Output

For each case the number of pairs modulo 1000000007.

Example

Input:
3
1
2
3

Output:

1
2
4

