Submit | All submissions | Best solutions | Back to list |
LOGPOWER - n-th Power |
Given an integer A, N and M, calculate R = AN modulo M, ie. the remainder after dividing N-th power of A by the modulus M.
Input
First line: positive integer T - numer of test cases, T<1000.
Next T lines contain 3 integers each: Ai, Ni and Mi.
Data constraints:
-230 < Ai < +230
0 < Ni < +260
2 < Mi < +230
Output
For each of test cases, output the number Ri - one in each line.
Example
Input: 6 1 2 3 4 5 6 7 8 9 12 34 56 78 90 123 4567890 123456789012 34567890 Output: 1 4 4 16 42 781950
Added by: | Robert Rychcicki |
Date: | 2009-01-10 |
Time limit: | 0.100s |
Source limit: | 50000B |
Memory limit: | 1536MB |
Cluster: | Cube (Intel G860) |
Languages: | All except: ERL JS-RHINO NODEJS PERL6 VB.NET |
hide comments
2023-12-18 04:41:25 David
No Java solutions. |
|
2010-09-24 23:14:11 Mitch Schwartz
For those wondering, it seems that (-2)^3 mod 100 can be either -8 or 92, both acceptable. |