Large Knapsack

The knapsack problem or rucksack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items.

Just implement 0/1 Knapsack.

Input

First line contains two integers K and N , where K in the maximum knapsack size and N is the number of items. N lines follow where $i^{i t h}$ line describes $i^{\text {th }}$ item in the form v_{i} and w_{i} where v_{i} is the value and w_{i} is the weight of $i^{\text {th }}$ item.

Output

Output a single number - maximum value of knapsack. (All operations and the answer are guaranteed to fit in signed 32-bit integer.)

Time limit changed to 2 s on 02.07.11.

Example

Input:
103
73
88
46
Output:
11

Constraints:

K <= 2000000
$\mathrm{N}<=500$
$\mathrm{V}_{\mathrm{i}}<=10^{\wedge} 7$
$\mathrm{W}_{\mathrm{i}}<=10^{\wedge 7}$

