Life Game

You are working at a production plant of biological weapons. You are a maintainer of a terrible virus weapon with very high reproductive power. The virus has a tendency to build up regular hexagonal colonies. So as a whole, the virus weapon forms a hexagonal grid, each hexagon being a colony of the virus. The grid itself is in the regular hexagonal form with N colonies on each edge.

The virus self-propagates at a constant speed. Self-propagation is performed simultaneously at all colonies. When it is done, for each colony, the same number of viruses are born at every neighboring colony. Note that, after the self-propagation, if the number of viruses in one colony is more than or equal to the limit density M, then the viruses in the colony start self-attacking, and the number reduces modulo M.

Your task is to calculate the total number of viruses after L periods, given the size N of the hexagonal grid and the initial number of viruses in each of the colonies.

Input

The input consists of multiple test cases.
Each case begins with a line containing three integers $N(1 \leq N \leq 6), M\left(2 \leq M \leq 10^{9}\right)$, and $L(1 \leq L$ $\leq 10^{9}$). The following $2 N-1$ lines are the description of the initial state. Each non-negative integer (smaller than M) indicates the initial number of viruses in the colony. The first line contains the number of viruses in the N colonies on the topmost row from left to right, and the second line contains those of $N+1$ colonies in the next row, and so on.

The end of the input is indicated by a line " 000 ".

Output

For each test case, output the test case number followed by the total number of viruses in all colonies after L periods.

Example

Input:
331
100
0000
00000
0000
001
332
100
0000
00000
0000
001
000

Output:
Case 1: 8
Case 2: 18

