BRVT - Math Team Collection 2013

Consider the sequence of all integers that can be represented as $2^{\wedge} m+2^{\wedge} n$ for integers $0<=m<$ n , in increasing order. Given a positive integer k, your task is to find m and n for the kth element of the sequence.

Input

The first line is an integer $T(T<=10)$ is the number of test cases.
T lines follow each line contains one integer k is the math requirement. ($k<=10^{\wedge} 9$)

Output

For each test case in the two numbers $m, n(m<n)$ is represented by the sequence number k.

Example

Input 1:

3
1
3
5

Output 1:

01
12
13
Input 2:
3
31
10
1997

Output 2:

28
34
4363
Limited $\ln 50 \%$ of tests, $\mathrm{k}<=10^{\wedge} 6$

Explanation

The series starts with $3,5,6,9,10 \ldots$
We need to find m and n for elements at indexes 1,3 and 5 , which have values 3,6 and 10 respectively.

- $3=2^{\wedge} 0+2^{\wedge} 1$
- $6=2^{\wedge} 1+2^{\wedge} 2$
- $10=2^{\wedge} 1+2^{\wedge} 3$

