Landfill

You are given a sequence $\mathrm{H}[1], \mathrm{H}[2] \ldots \mathrm{H}[\mathrm{N}]$ representing the initial heights of N pieces of land and an integer K. It costs $\mathrm{C}[\mathrm{i}]$ Rupees to elevate each of $\mathrm{H}[\mathrm{i}], \mathrm{H}[\mathrm{i}+1] \ldots \mathrm{H}[i+\mathrm{K}-1]$ by $\mathrm{E}[\mathrm{i}]$; if $\mathrm{i}+\mathrm{K}>\mathrm{N}$, it will just elevate all the pieces of land from $A[i]$ to $A[N]$ - Let us call this an operation. The following constraints must be satisfied:

1. For each i, the operation can be performed at most once.
2. The sum of the costs of all the operations performed must be <= Budget.

You have to calculate the maximum height V such that each plot's elevation is at least V before you exhaust the budget.

Input

The first line of input contains 3 integers N, Budget and K.
The next N lines consists of 3 integers $\mathrm{H}[\mathrm{i}], \mathrm{E}[\mathrm{i}]$ and $\mathrm{C}[\mathrm{i}]$.

Output

Output a single integer V such that all the plots have at least height V .

Constraints

$1<=\mathrm{K}<=11$
$1<=\mathrm{N}<=100$
$0<=$ Budget, $H[i], E[i], C[i]<=1000000$

Example

Input:
4201
135
173
469
3513

Output:

3

Explanation

You can raise the level of the (unit) segments 1,2 and 3 , yielding a sequence of final heights 4,8 , 10 and 3 . The minimum height among these is 3.

