K-transfer journey

There are **N** cities numbered from 1 to N, connected by **M** flights. Note that a flight from city 1 to 2 doesn't necessarily mean there is a flight from 2 to 1, and some cities may not be connected by any flights. Also, there is at most one directed flight from one city to another one. The i-th flight connects city U_i with city V_i , takes W_i seconds, plus a constraint: the current accumulated travel time cannot exceed L_i when you are in U_i and plan to go to V_i from there for health reason.

Duck wants to travel, but he will be very tired if he takes too many flights! Therefore, he doesn't want to take more than **K** flights. Can you find out the shortest travel time for all pairs of cities by not taking more than K flights and following the accumulated travel time constraint of each flight?

Input

The first line is the number of test cases **T**. $(1 \le T \le 20)$

For each test case, it starts with N, M, K. $(2 \le N \le 50, 0 \le M \le N \times (N - 1), 1 \le K \le N - 1)$

Following M lines, each consisting U_i , V_i , W_i , L_i . ($1 \le U_i$, $V_i \le N$ where $U_i \ne V_i$, $1 \le W_i \le 10^4$, $1 \le L_i \le 10^4 \times 50$)

Output

Output a N × N distance matrix, printing out the shortest travel time for all pairs of cities. If one city is not reachable from one city, print out -1 instead.

Example

Explanation

Select some results to explain, won't go through all..

In case 1, 1 -> 3 is 13 through 2, rather than 7 through 8 because 1 -> 8 is 4, and 8 to 3 has a accumulated time constraint which is 3.

8 -> 6 is not reachable although there is exactly one path connecting them and within K, the constraint of 5 -> 6 is 11, which is larger than accumulated time of 13.

In case 2, 5 -> 2 is not reachable. Only one path connecting 5 to 1 which takes 33. From 1 -> 2 the shortest time is 10 but its constraint is 31 which is larger than 33. So we pass through 3 instead and the total time becomes 47. Unluckily the constraint of 3 -> 2 also limits the reachability.