K-transfer journey

There are \mathbf{N} cities numbered from 1 to \mathbf{N}, connected by \mathbf{M} flights. Note that a flight from city 1 to 2 doesn't necessarily mean there is a flight from 2 to 1 , and some cities may not be connected by any flights. Also, there is at most one directed flight from one city to another one. The i-th flight connects city $\mathbf{U}_{\mathbf{i}}$ with city $\mathbf{V}_{\mathbf{i}}$, takes $\mathbf{W}_{\mathbf{i}}$ seconds, plus a constraint: the current accumulated travel time cannot exceed $\mathbf{L}_{\mathbf{i}}$ when you are in U_{i} and plan to go to V_{i} from there for health reason.

Duck wants to travel, but he will be very tired if he takes too many flights! Therefore, he doesn't want to take more than \mathbf{K} flights. Can you find out the shortest travel time for all pairs of cities by not taking more than K flights and following the accumulated travel time constraint of each flight?

Input
The first line is the number of test cases $\mathbf{T} .(1 \leq T \leq 20)$
For each test case, it starts with $\mathbf{N}, \mathbf{M}, \mathbf{K} .(2 \leq N \leq 50,0 \leq M \leq N \times(N-1), 1 \leq K \leq N-1)$
Following M lines, each consisting $\mathbf{U}_{\mathbf{i}}, \mathbf{V}_{\mathbf{i}}, \mathbf{W}_{\mathbf{i}}, \mathbf{L}_{\mathbf{i}} \cdot\left(1 \leq U_{i}, V_{i} \leq N\right.$ where $\left.U_{i} \neq V_{i}, 1 \leq W_{i} \leq 10^{4}, 1 \leq L_{i} \leq 10^{4} \times 50\right)$

Output

Output a $N \times N$ distance matrix, printing out the shortest travel time for all pairs of cities. If one city is not reachable from one city, print out -1 instead.

Example

Input:
2
8153
12410
17728
18427
23934
26614
2787
28112
351024
53839
54628
56511
6569
7246
76712
8333
695
121031
131458
152324
311212
32419
412053
452547
541347
62439

Output:

Explanation

Case \#1

Case \#2

Select some results to explain, won't go through all..
In case $1,1->3$ is 13 through 2, rather than 7 through 8 because $1->8$ is 4 , and 8 to 3 has a accumulated time constraint which is 3 .
$8->6$ is not reachable although there is exactly one path connecting them and within K, the constraint of $5->6$ is 11 , which is larger than accumulated time of 13.

In case 2, $5->2$ is not reachable. Only one path connecting 5 to 1 which takes 33 . From $1 \rightarrow 2$ the shortest time is 10 but its constraint is 31 which is larger than 33 . So we pass through 3 instead and the total time becomes 47 . Unluckily the constraint of $3->2$ also limits the reachability.

