Subsequences with modulo

You are given sequence $A_1, A_2, ..., A_n$ and integer k. For each integer i ($0 \le i < k$) find such **nonempty** subsequence of A so that sum of numbers in this subsequence is maximal possible and remainder of integer division of this sum by k is equal to *i*.

Input

In first line numbers *n* and *k* ($1 \le n \le 10^6$, $1 \le k \le 200$).

In second line: *n* numbers representing sequence $A (1 \le A_i \le 10^9)$.

Output

Print *k* numbers in one line. *i*th number represent sum of numbers in subsequence for number *i* - 1. If there is no such subsequence print -1.

Example

Input: 6 5 2 8 10 44 15 32 Output: 65 111 77 103 109