## Median of sub-sequences

Let a given sequence $S$ (of length $n$ ) of positive integers be called $x$-medial (where $x$ is a positive integer) if:

1. n is odd, and the median of the sequence (the $((\mathrm{n}+1) / 2)^{\text {th }}$ largest term) equals x . OR
2. $n$ is even, and both the central terms $\left((n / 2)^{\text {th }} \text { largest and ( } n / 2+1\right)^{\text {th }}$ largest) are equal to $x$.

Given a sequence $A$ (of length $N$ ) of positive integers and an integer $k$, find out how many of its sub-sequences are k-medial.
$A$ sub-sequence of $A$ is any sequence $\{A[i], A[i+1], A[i+2] \ldots, A[j]\}$, where $0 \leq i \leq j<N$.

## Input

The first line contains $T(T \leq 15)$, the number of test cases.
Each test case consists of 2 lines. The first line contains the numbers $N\left(1 \leq N \leq 10^{5}\right)$ and $k$ ( $1 \leq \mathrm{k} \leq 10^{9}$ ), seperated by a single space.

The next line contains the sequence $A\left(N\right.$ terms, each $\leq 10^{9}$, seperated by single spaces between them).

## Output

Output $T$ lines, each containing a single integer, equal to the number of $k$-medial sub-sequences.

## Example

Input:
2

35
1752
52
12237

## Output:

2
7

