Kimo and Divisors

Kimo loves all sorts of properties of odd numbers. He learned a new algorithm to get all divisors of a certain number.

Help him to determine if a number has odd number of divisors.

Input

t - the number of test cases, then t test cases follows. [$t<=1000$]
Each line contains one interger: $N\left[1<=N<=10^{9}\right]$

Output

For each test case output one line contains "YES" if the given number has odd number of divisors an "NO" otherwise.

Example

Input:
2
4
7
Output:
YES
NO

Note

in the 1st case: divisors of 4 are : $(1,2,4)$ and the number of divisors is 3 (odd)
in the 2nd case: divisors of 7 are : $(1,7)$ and the number of divisors is 2 (even)

