K-Divisors

The positive divisor function is defined as a function that counts the number of positive divisors of an integer \mathbf{N}, including $\mathbf{1}$ and \mathbf{N}.

If we define the positive divisor function as $\mathbf{D}(\mathbf{N})$, then, for example:
$D(1)=1$
$D(2)=2$
$D(10)=4$
$D(24)=8$

Calculating $\mathbf{D}(\mathbf{N})$ is a classical problem and there are many efficient algorithms for that. But what if you are asked to find something different? Given a range and an integer \mathbf{K}, can you find out for how many \mathbf{N} in the given range, $\mathbf{D}(\mathbf{N})$ equals \mathbf{K} ?

Input

In the very first line, you'll have an integer called \mathbf{T}. This is the number of test cases that shall follow. Every test case contains three integers, \mathbf{L}, \mathbf{R}, and \mathbf{K}. L and \mathbf{R} represent the range and are inclusive.

Constraints

- $1 \leq T<31$
- $1 \leq L \leq R<2^{31}$
- $1 \leq K<2^{31}$

Output

For every test case, you must print the case number, followed by the count of numbers with exactly \mathbf{K} divisors in the range.

Sample Input

3
10104
2132
10010000100

Sample Output

Case 1: 1
Case 2: 6

Case 3: 0

